Modeling the Effect of Mediation on HIV Prevalence in Kenya using a Logistic Regression Model

Ruth Naomi Wanga a*, David Alila a#, Everlyne Akoth Odero a# and Robert Keli a#

aDepartment of Mathematics Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya.

Authors’ contributions
This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information
DOI: 10.9734/AJPAS/2023/v23i2498

Open Peer Review History:
This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/101118

Received: 10/04/2023
Accepted: 14/06/2023
Published: 19/06/2023

Original Research Article

Abstract
The control of HIV/AIDS demands different interventions based on various HIV risk factors directly or indirectly affecting HIV prevalence through a mediator variable. There is however limited literature on how these risk factors interact with each other and in turn affect HIV/AIDS prevalence in presence of mediator factors [1]. A logistic regression model formulated in presence of mediation was found to fit both simulated and real data from 2018 Kenya Population-based HIV Impact Assessment (KENPHIA) survey well and had a higher predictive power as compared to the model formulated in absence of mediation. This was accomplished by using Binary logistic regression to fit the models and estimating the model parameters using Maximum Likelihood Estimation in R. Akaike’s Information Criterion was used to determine amount of data lost by respective models and McFadden’s R^2 to evaluate the adequacy of the model fit.

*Corresponding author: E-mail: wangaruth@mmust.ac.ke;

Keywords: Mediation; logistic regression.

1 Introduction

According to UNAIDS Global report [2], 35.3 million people worldwide were living with HIV/AIDS, with 2.2 million being the new infections in 2021.

Currently Kenya has a HIV prevalence rate of 4.5% among adults between the ages of 15–49 years and 4.9% among adults between the ages of 15–64 years, [3] & [4]. The variations in HIV prevalence rates cuts across Counties, gender and age [3].

Although the HIV/AIDS epidemic in Kenya has steadily decreased among adults aged 15 to 64 years since 2010, the UNAIDS/WHO AIDS Epidemic Update shows that the actual number of infected individuals is still rising as a result of new infections and longer life expectancy brought on by the use of anti-retro-viral medications. This calls for further research to be done in order to better understand the causes of HIV sero-positivity and how to control HIV/AIDS in the Nation, [5].

The effective investments done in controlling HIV infections in Kenya [5], has culminated to steady decline in the overall HIV/AIDS prevalence in Kenya, however, there still remain high rates of new infections and differences in the risk of infection, [6]. This could be attributed to the varying effects of interventions used on HIV/AIDS control, either directly or indirectly.

Exposure to HIV-related media is one of the most widely used HIV/AIDS control interventions in Kenya, taking into account the social setting in the country. However, due to the numerous HIV risk factors present in the nation, it is nearly impossible to assess the intervention’s effect on HIV control and determine whether it is considerably slowing the spread of HIV/AIDS as intended due to its unmeasured indirect effect on HIV/AIDS [7].

In this study, exposure to HIV-related mass media is assumed to be a mediating factor between HIV risk factors and HIV prevalence in Kenya.

The biggest challenge however with mass media campaign lies in disseminating accurate, objective, balanced and non-judgmental information on HIV/AIDs to individuals, which implies that the effect of exposure to media in HIV control varies across population groups across the country.

A path diagram as indicated in Fig 1 by [8], describes simple relationship between the dependent Y, mediator M and independent X variables.

Hayes [8] concludes that one route connects X and Y directly and is known as the direct effect of X to Y, whereas the other route connects X and Y via a mediator M and is known as the indirect effect of X to Y. α is the total effect, α’ represents a direct effect and the effect of independent variable on mediator variable is represented by β while that between the mediator and the dependent variable is shown by γ. Further, Hayes uses a series of Ordinary Least Square regression equations below to sufficient describe a simple mediation model.

\[Y = \kappa_1 + \alpha X + \epsilon_1 \] (1)

\[M = \kappa_2 + \beta X + \epsilon_2 \] (2)

\[Y = \kappa_3 + \alpha' X + \gamma M + \epsilon_3 \] (3)

\(\kappa_1 \), \(\kappa_2 \) and \(\kappa_3 \) shows the intercepts for each of the three equations, while \(\epsilon_1 \), \(\epsilon_2 \) and \(\epsilon_3 \) are respective residuals assumed to follow normal distribution with mean 0 and variance \(\sigma^2_1 \), \(\sigma^2_2 \) and \(\sigma^2_3 \) respectively. This model was adopted in formulating logistic regression model in presence of mediation which was compared to the model formulated in absence of mediation to determine the best performing model. The study’s findings suggested
that the model with mediation was most preferable as compared to the model without mediation because of its lower AIC values, and higher Mc Fadden R^2 values as compared to that of the model in absence of mediation.

![Path diagram: A Simple Mediation Model](Image)

2 Formulation of a Logistic Regression Model in the Absence of Mediation and Parameter Estimation

For the KENPHIA data, the response variable used was “HIV final result” (HIV positive-1; HIV Negative-2). The mediator variable used was “ever heard of HIV” (Yes-1; No-2).

The independent variables: Behavioral variables, Social variables, Demographic variables and Biological variables were assessed using various questions in the survey as follows:

Behavioral variables as “used condom at last sexual encounter in the past 12 months” (Used condom at last sexual intercourse in the past 12 months-1, Did not use condom at last sexual intercourse in the past 12 months-2, No sexual intercourse in the past 12 months-3).

Social variables as “Education level in Kenya” (1 - No primary, 2 - Incomplete Primary, 3 - Complete Primary, 4 - Complete Secondary).

Demographic variables as “Urban Area Indicator” (Urban =1; Rural = 2) and Biological variables as “Gender” (Male =1; Female =2).

A sample of n with n_i independent observations was drawn and used from a data set with a total population size of N with i independent observations each defined as $y_i = 1$ if HIV positive or 0 otherwise.

where $i = 1, 2, \cdots N$. The distribution of Y_i is a Bernoulli and the probability of an individual sampled being HIV positive is $Pr(Y_i = 1) = \pi$ whereas the probability of the sampled individual being HIV negative is $Pr(Y_i = 0) = 1 - \pi$.
In general, the mean of the binary response variable Y_i can be modeled in terms of predictor variable x_i through a linear function given as:

$$E(Y_i) = \beta_0 + \beta_r x_{ir}$$ \hspace{1cm} (4)

where Y_i is the response variable, x_{ir} are the explanatory variables and β_r are the unknown parameters to be estimated. \hspace{1cm}$i = 1, 2, \cdots, N$ while $r = 0, 1, 2, \cdots, R$. The logit transform is equated to the log-odds of the probability of success and to the linear function with multiple predictor variables using the logistic regression model as follows:

$$\text{Log(ods)} = \ln \left(\frac{\pi}{1 - \pi} \right) = \beta_0 + \beta_1 x_{i1} + \cdots \beta_R x_{ir}$$ \hspace{1cm} (5)

Solving Equation 5 by taking anti log and solving for π

$$\ln \left(\frac{\pi}{1 - \pi} \right) = \beta_0 + \beta_1 x_{i1} + \cdots \beta_R x_{ir}$$

$$\pi = \frac{\exp \sum_{r=0}^{R} \beta_r x_{ir}}{1 + \exp \sum_{r=0}^{R} \beta_r x_{ir}}$$

The general form of the joint probability distribution (likelihood) for the binary data is given as:

$$L = \prod_{i=1}^{n} \pi^{y_i}(1 - \pi)^{1-y_i}$$

$$L = \pi^{\sum_{i=1}^{n} y_i} (1 - \pi)^{n - \sum_{i=1}^{n} y_i}$$ \hspace{1cm} (7)

Taking natural logs of the likelihood in Equation 7

$$\ln L = \sum_{i=1}^{n} y_i \ln \pi + \left(n - \sum_{i=1}^{n} y_i \right) \ln(1 - \pi)$$

$$= \sum_{i=1}^{n} y_i \ln \pi - \sum_{i=1}^{n} y_i \ln(1 - \pi) + n \ln(1 - \pi)$$

$$= \sum_{i=1}^{n} y_i \ln \left(\frac{\pi}{1 - \pi} \right) + n \ln(1 - \pi)$$ \hspace{1cm} (8)
Substituting $\ln\left(\frac{\pi}{1-\pi}\right)$ and π in Equation 8

$$\ln L = \sum_{i=1}^{n} y_i \left(\sum_{r=0}^{R} \beta_r x_{ir} \right) + n \ln \left(1 - \frac{\exp^{\sum_{r=0}^{R} \beta_r x_{ir}}}{1 + \exp^{\sum_{r=0}^{R} \beta_r x_{ir}}} \right)$$

$$= \sum_{i=1}^{n} y_i \left(\sum_{r=0}^{R} \beta_r x_{ir} \right) + n \ln \left(1 + \exp^{\sum_{r=0}^{R} \beta_r x_{ir}} \right)$$

$$= \sum_{i=1}^{n} y_i \left(\sum_{r=0}^{R} \beta_r x_{ir} \right) + n \ln(1 + \exp^{\sum_{r=0}^{R} \beta_r x_{ir}}) - 1 \quad (9)$$

Recall that, $-\ln(x) = \ln(x)^{-1}$, thus we obtain;

$$\ln L = \sum_{i=1}^{n} y_i \left(\sum_{r=0}^{R} \beta_r x_{ir} \right) - n \ln \left(1 + \exp^{\sum_{r=0}^{R} \beta_r x_{ir}} \right) \quad (10)$$

The log likelihood function in Equation 10 represents the formulated logistic regression model in the absence of mediation. Differentiating the log likelihood with respect to parameters β_r and solving provides the maximum likelihood estimates in the model.

Recall that, $\frac{\partial}{\partial \beta_r} \sum_{r=0}^{R} \beta_r x_{ir} = x_{ir}$, Since the terms under summation do not depend on β_r and assumed to be constants, [10].

Derivative with respect to β_r will be

$$\frac{\partial \ln L}{\partial \beta_r} = \sum_{i=1}^{n} y_i x_{ir} - n \frac{1}{1 + \exp^{\sum_{r=0}^{R} \beta_r x_{ir}}} \frac{\partial}{\partial \beta_r} (1 + \exp^{\sum_{r=0}^{R} \beta_r x_{ir}}) \frac{\partial}{\partial \beta_r} (\sum_{r=0}^{R} \beta_r x_{ir}) = 0 \quad (11)$$

Setting the Equation 11 to zero results to $r + 1$ non-linear equations each having $r + 1$ unknown parameters that can be solved using iterative process to give maximum likelihood estimates of the models.

3 Formulation of a Logistic Regression Model in Presence of Mediation and Parameter Estimation

Equations 1, 2 and 3 were used to fit a simple mediation model in Figure 1. This study considered one independent variable, Y_i, with multiple covariates, X_i. According to [8], mediation analysis mainly looks at decomposing total effect (TE) of the exposure variable into Indirect effect through a mediator and direct effect whose impacts solely comes from the exposure variable.

The mediation effect is indicated by α and γ paths while the direct effect by α' path as shown in Fig. 1.

In this study both Mediation variable, M and dependent variable, Y were Binary variables and the sample size for estimating the parameters for M-regression and Y-regression equations were the same. The product of coefficients (ab) method was used in this study because of its strength in considering one regression model for the outcome and another regression model for the mediator thus circumventing the model compatibility issue in the difference method Cheng [11].

Assuming the conditional mean model of outcome Y_i in Equation 3.

$$g(E(Y_i|X_i, M_i, e_i)) = \kappa_3 + \alpha X + \gamma M + e_3 \quad (12)$$

where $g(.)$ is the logit link function, since the outcome is Binary in nature while α' is the exposure effect on the outcome conditional to the effect of the mediator and error term. γ represents the relationship between the
mediator variable and outcome variable conditional to the effect of the exposure variable and the error term. In addition, the product method required fitting the mediator model as shown in Equation 2

\[h(E(M \mid X, e_2)) = \kappa_2 + \beta X + e_2 \] (13)

Where \(h(.) \) is a logit link function given that our mediator variable is Binary and \(\beta \) represents the association between the exposure variable and mediator variable conditional on the effects of the covariates and the error term. \(e_2 \) and \(e_3 \) are independent mean-zero normal errors.

Huberman et al. [12], states that the total effect which is the expectation of \(X \) on \(Y \) can further be decomposed through the mediator into direct and indirect effects as follows;

The total effect of \(X_i \) on \(Y_i \) can be captured in a regression Equation as;

\[Y = X \beta + \epsilon_1 \]

Where \(X = (x_i, \beta = (\beta_0, \beta_1) \)' and \(\epsilon \) represents a mean-zero normal error.

The expectation of \(Y \) was given as;

\[E(Y) = E(E(Y \mid M)) = E(\alpha X + \gamma M) = E(\alpha X + \gamma(\beta X)) = \alpha X + \gamma(\beta X) = X(\alpha + \gamma \beta) \] (14)

The total effect is represented as

\[\alpha = \alpha' + \gamma \beta \] (15)

where \(\alpha' \) and \(\gamma \beta \) represent the direct and indirect effects, respectively [13].

The likelihood for a binary data as in this study is given as

\[L = \prod \pi_{y_i} (1 - \pi_i)^{1 - y_i} = \prod \pi_{y_i} (1 - \pi_i)^{n - \sum y_i} \] (16)

Taking the log of the likelihood function in Equation 16

\[\ln L = \sum y_i \ln \pi + (n - \sum y_i) \ln (1 - \pi) \]

\[= \sum y_i \ln \pi - \sum y_i \ln (1 - \pi) + n \ln (1 - \pi) \]

\[= \sum y_i \left(\ln \frac{\pi}{1 - \pi} \right) + n \ln (1 - \pi) \] (17)

Similarly substituting for \(\left(\ln \frac{\pi}{1 - \pi} \right) \) and \(\pi \)

\[\ln L = \sum y_i \ln \left(\sum_{r=0}^{R} \beta_{mr} x_{ir} \right) + n \ln \left(1 - \frac{\exp \sum_{r=0}^{R} \beta_{mr} x_{ir}}{1 + \exp \sum_{r=0}^{R} \beta_{mr} x_{ir}}\right) \]

\[= \sum y_i \ln \left(\sum_{r=0}^{R} \beta_{mr} x_{ir} \right) + n \ln \left(\frac{1}{1 + \exp \sum_{r=0}^{R} \beta_{mr} x_{ir}} \right) \]

\[= \sum y_i \ln \left(\sum_{r=0}^{R} \beta_{mr} x_{ir} \right) + \ln(1 + \exp \sum_{r=0}^{R} \beta_{mr} x_{ir})^{-1} \] (18)
Recall that \(-1 \ln(x) = \ln(x)^{-1}\), thus we obtain
\[
\ln L = \sum y_i \ln \left(\sum_{r=0}^{R} \beta_{mr} x_{ir} \right) - n \ln \left(1 + \exp \sum_{r=0}^{R} \beta_{mr} x_{ir} \right)
\] (19)

This represents the formulated logistic regression model in the presence of mediation, which is differentiated with respect to parameters \(\beta_{mr}\) and solved to find the Maximum likelihood estimates \(\beta_{mr}\).

Recall that,
\[
\frac{\partial}{\partial \beta_{mr}} \sum_{r=0}^{R} \beta_{mr} x_{ir} = x_{ir}
\] (20)

Derivative with respect to \(\beta_{mr}\)
\[
\frac{\partial \ln L}{\partial \beta_{mr}} = \sum_{i=1}^{n} y_i x_{ir} - n \frac{1}{1 + \exp \sum_{r=0}^{R} \beta_{mr} x_{ir}} \frac{\partial}{\partial \beta_{mr}} (1 + \exp \sum_{r=0}^{R} \beta_{mr} x_{ir}) \frac{\partial}{\partial \beta_{mr}} \left(\sum_{r=0}^{R} \beta_{mr} x_{ir} \right)
\] (21)

Using the same procedure as mentioned under model in the absence of mediation, \(mr + 1\) non-linear equations each having \(mr + 1\) unknown parameters under this model are solved using iterative process under Newton Raphson Method, and this results into a vector of \(\beta_{mr}\) elements.

4 Data Analysis and Results

Simulated data and Kenya Population-based HIV Impact Assessment (KENPHIA) data were separately fit to each of the models formulated;

4.1 Data simulation

Considering a simple linear model involving five covariates including the mediator variable:
\[
Y_i = \beta_0 + \beta_1 B_{i1} + \beta_2 S_{i2} + \beta_3 D_{i3} + \beta_4 b_{i4} + \beta_5 m_{i5} + \epsilon_i
\] (22)

where \(\epsilon_i \sim N(0, \sigma^2)\)
a random sample was generated under binomial distribution given a bernoull response variable \(Y\) using r-software and generalized linear model was used to make predictions of \(X nd M\) on \(Y\). Density plots were meant to visualize any variations in the two scenarios.

Fitting Logistic Regression Model to simulated data set without and with mediation and their respective parameter estimates

Let;
P represent HIV status
B represent Behavioral factors
S represent Social Economic factors
D represent Demographic factors
b represent Biological factors
m represent mediation effect

Using R the fitted logistic regression model without mediation is as follows;
\[
\log \left(\frac{\pi}{1 - \pi} \right) = 0.02980 + 0.04475B + 0.01488S + 0.04608D - 0.04236b
\] (23)
The results of the analysis shows that:
There is Positive correlation between Behavioral factors, Social economic factors, Demographic factors and HIV prevalence respectively. However there is Negative correlation between biological factors and HIV prevalence. The value of AIC obtained while fitting the model was 1395.

Fitting Logistic Regression Model to simulated data set with mediation is as follows.

The fitted logistic regression model Parametric estimates was as follows:

\[
\log \left(\frac{\pi}{1-\pi} \right) = -0.01964 + 0.04248B + 0.01843S + 0.04982D -0.04959b + 0.05256m
\]

whereas their parameter estimates as in Table 2;

The results shows that there is a Positive correlation between behavioral factors, Social economic factors, Demographic factors and HIV prevalence while biological factors were negatively correlated with HIV prevalence. The value of AIC obtained while fitting the model was 1394 which is fairly lower, implying that less data was lost when fitting model with mediation as compared to that for the model without mediation.

The lower AIC value and higher McFadden R^2 obtained in the model with mediation indicates that the model formulated in presence of mediation is of good quality and well fits the simulated data than the other without mediation.

The plotted density curve of the model without mediation is steeper compared to the model with mediation. This implies that mediator variable plays a big role in lowering the HIV prevalence as shown in Fig 2.

5 Kenya Population-based HIV Impact Assessment 2018 Survey Data

This survey was carried out with an aim of building on the previously conducted Kenya AIDS Indicator Survey (KAIS) surveys. The new features in the survey included HIV prevalence of each of the 47 counties and the National HIV prevalence that included for Mandera, Wajir and Garissa counties which were previously excluded
from data collected in the KAIS as indicated in the Kenya HIV estimates report [6]. The survey was conducted among persons aged 0-64 years in 800 clusters, based on the National Sample Survey and Evaluation Programme, version V (NSSEP V), sampling framework developed by the Kenya National Bureau of Statistics (KNBS). The survey, targeted 34,610 persons of whom 27,897 were adults aged 15-64 years, and 6,713 were children aged 0-14 years.

Fitting Logistic Regression Model to KENPHIA data set without mediation and parameter estimates

From the KENPHIA data, our response variable was Final HIV Status; 1-HIV Positive, 0-HIV Negative.

The predictor variables in the model include “Gender” as the Biological factor whose responses were 1-Male and 2-Female, “Education level in Kenya” as the social factor with responses; 1-No primary, 2-Incomplete primary, 3-complete primary and 4-complete secondary), “Urban Area Indicator” as the Demographic variable with responses; 1-Urban, 2-Rural and “Used condom at last sexual intercourse in the past 12 months”, as the Behavioral factor with responses 1 - Used condom at last sexual intercourse in the past 12 months 2 - Did not use condom at last sexual intercourse in the past 12 months 3 - No sexual intercourse in the past 12 months.

The logistic regression model without mediation was then fitted as follows;

\[
\log \left(\frac{\pi}{1 - \pi} \right) = 1.863541 + 0.038917B + 0.014316S - 0.039834b
\]

The graph shows the density curve of predictor variables using simulated data in presence and absence of mediation.
Table 3. Parametric estimates of the fitted regression model to KENPHIA data without Mediation

<table>
<thead>
<tr>
<th>Coefficients</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.863541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.038917</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.014316</td>
<td>0.013461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td>-0.039834</td>
</tr>
<tr>
<td>Residual Deviance: 1215.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC: 525.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3 shows a Positive correlation between Behavioral factors, B and HIV prevalence, a positive correlation between Social economic factors, S and HIV prevalence, and a Positive correlation between Demographic factors, D and HIV prevalence. The table further shows a Negative correlation between biological factors, b and HIV prevalence. The AIC value obtained while fitting the model was 525.06.

Fitting Logistic Regression Model to KENPHIA data set with mediation and parameter estimates

To fit the model with mediation, a mediator variable was introduced in the earlier formulated model under equation 25

The study assumed that all the individuals tested were exposed to HIV/AIDS. The mediator variable therefore was Ever tested for HIV and responses were; Ever Tested-1, Never tested-2. The logistic regression model with mediation was then fitted as follows;

$$
\log \left(\frac{\pi}{1 - \pi} \right) = 1.793732 + 0.036647B + 0.018416S + 0.011259D - 0.031591b + 0.047586m
$$

Table 4. Parametric estimates of the fitted regression model to KENPHIA data with Mediation

<table>
<thead>
<tr>
<th>Coefficients</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.793732</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.036647</td>
<td>0.018416</td>
<td>0.011259</td>
<td>-0.031591</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td>0.047586</td>
</tr>
<tr>
<td>Residual Deviance: 1210.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC: 434.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4 shows a Positive correlation between Behavioral factors and HIV prevalence, a positive correlation between Social economic factors and HIV prevalence and a Positive correlation between Demographic factors and HIV prevalence. There is also a Negative correlation between biological factors and HIV prevalence and the value of AIC obtained while fitting the model was 434.01.

Therefore, introduction of mediation in the model lowered the effect of each parameter on HIV prevalence hence overall bringing the HIV prevalence levels down.

Similarly, the model with mediation was of better quality with less data lost and had a higher predictive power due to higher McFadden’s R^2 obtained as compared to the model without mediation. The plotted density curve in figure 3 indicates that mediation variable tends to lower the prevalence rate of HIV/AIDS among individuals irrespective of their gender, education level, Urban Rural indicator and Condom use unlike in the model without mediation where HIV/AIDS prevalence varies with the group in which individuals are in terms of the associated risk factor.
Therefore, using both simulation and real data from KENPHIA survey shows that mediation plays a great role in prevention of HIV/AIDS in Kenya.

Table 5. Selection process of the best model using simulated and KENPHIA data

<table>
<thead>
<tr>
<th>Model parameter</th>
<th>Estimated parameter effect</th>
<th>AIC Value</th>
<th>McFadden R^2 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Without mediation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.04475</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.01488</td>
<td>1395</td>
<td>0.001048959</td>
</tr>
<tr>
<td>D</td>
<td>0.04608</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-0.04236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation With mediation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.04248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.018413</td>
<td>1394</td>
<td>0.003113601</td>
</tr>
<tr>
<td>D</td>
<td>0.04982</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-0.04959</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>0.05256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KENPHIA Without mediation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.038917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.014316</td>
<td>525.06</td>
<td>0.3593836</td>
</tr>
<tr>
<td>D</td>
<td>0.013461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-0.039834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KENPHIA With mediation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>0.036647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>0.018416</td>
<td>434.01</td>
<td>0.4755762</td>
</tr>
<tr>
<td>D</td>
<td>0.011259</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>-0.031591</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>0.047586</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 3. Density Curve of predictor variables for KENPHIA data set in presence and in absence of mediation variable
6 Summary of Results and Conclusion

The study aimed at modeling the effect of mediation on HIV/AIDS prevalence in Kenya using logistic regression model. In both cases the model with mediator variable present was found to be of better quality with a high predictive power as indicated by the values of AIC and McFadden R^2 values presented in the table 5.

7 Recommendation for Further Research

There are complexities involved in estimating the effect of specific interventions used to control spread of HIV/AIDS due to prevailing HIV related risk factors such as socio economic, demographic and cultural background of individuals on HIV Prevalence in Kenya. These risk factors will either enhance or hinder the intervention, in this case the mediating factors used in lowering HIV prevalence in the country. Therefore, there is need to estimate the effect of mediators used in HIV/AIDS control. This will help the country to channel resources to the specific mediators that are effective and efficient in controlling HIV prevention. This study, therefore recommends further work to be carried out to determine the effect of other mediators on HIV prevalence given the prevailing HIV related risk factors other than the mediator used in the current study.

Competing Interests

Author has declared that no competing interests exist.

References

© 2023 Wanga et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
http://www.sdiarticle5.com/review-history/101118