Estimates of Intrinsic Growth Rates and Basic Reproduction Number (R0) for the First Historical Zika Outbreak in Salta, Argentina

Main Article Content

Juan Carlos Rosales
Nels´on A. Acosta
Celeste Herrera

Abstract

Scopes and Objectives: After entering South America in May 2015 through northeast Brazil, the Zika virus spread to Argentina between April and June 2016 and reached Salta province the following year. We analyzed some aspects of the first historical outbreak of Zika that occurred in Salta, Argentina, in the year 2017. We obtained elementary estimates, such as the intrinsic growth rate of the cases accumulated in the first weeks of the outbreak, using expressions that relate it to the basic reproduction number thereof. Study design: Retrospective-descriptive studies and relational analysis.

Place and Duration of Study: Department of Mathematics, Faculty of Exact Sciences and Faculty of Engineering. National University of Salta, Argentina, from September 2019 to June 2020.

Methodology: Descriptive and relational analysis. Estimates of parameters and Simulation tests were also carried out in order to qualitatively describe the first Zika historical outbreak in Salta. 

Results: Our study revealed that the Zika virus in the province of Salta mainly affects the localities of the departments of Or´an, General San Mart´ın, and Rivadavia, with infection forces α2017 ≈ 0.42 week-1 (SD 0.05) and α2017 ≈ 0.32 week-1 (SD 0.02) with the refined exponential model. On the other hand, we obtained estimates of the basic reproduction number R0 ≈ 1:105 95% CI[1:104 - 1:106] and R0 ≈ 1:111 95% CI[1:110 - 1:112]. 

Conclusion: Both the values of the estimates of the infection forces and R0 would seem to indicate that the first outbreak of Zika in Salta was of relatively low intensity and of short duration, coinciding with patterns generally present emerging diseases. We found practically no differences with the estimates provided by the two expressions of basic reproduction number used. Although the estimates slightly exceed the threshold value R0 = 1, with respect to other
estimates, we consider them quite reasonable for the first historical outbreak occurred in Salta, since it was short-lived and of little intensity.

Keywords:
Models theoretical, basic reproduction number, simulation, Zika virus, prevention & control.

Article Details

How to Cite
Rosales, J. C., Acosta, N. A., & Herrera, C. (2020). Estimates of Intrinsic Growth Rates and Basic Reproduction Number (R0) for the First Historical Zika Outbreak in Salta, Argentina. Asian Journal of Probability and Statistics, 8(4), 48-60. https://doi.org/10.9734/ajpas/2020/v8i430214
Section
Original Research Article

References

Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB. Zika virus outbreak on Yap Island, Federated States of Micronesia. The New England Journal of Medicine. 2009;360:2536-2543.

German Advisory Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens Transmissible by Blood’. Zika Virus. Transfusion Medicine Hemotherapy. 2016;43:436-446.

The year Zika evolved from an emergency into a long-term public health challenge. Pan American Health Organization PAHO; 2016. Available:https://www.paho.org/hq/index.phpoption¯com content&view=article&id=12861:2016- zika-evolved-from-emergency-into-long-term-public-health-challenge&Itemid=1926〈=en

Anderson R, May R. Infectious diseases of human. Dynamics and Control. Oxford UK, Oxford Sciences Publications; 1991..

Orellano P, Vezzani D, Quaranta N, Cionco R, Reynoso J, Salomon O. Potential occurrence of Zika from subtropical to temperate Argentina considering the basic reproduction number (R0). Revista Panamericana de Sal´ud P´ublica. 2017;41:1-10.e120. DOI:10.26633/RPSP.2017.120

Stocks T, Britton T, Hohle M. Model selection and parameter estimation for dynamic epidemic models via iterated filtering: application to rotavirus in Germany. Biostatistics. 2020;21(3):400-416.

Banks RB. Growth and diffusion phenomena. Mathematical Frameworks and Applications. Text in Applied Mathematics 14. Springer; 1994.

Begon M, Townsend CR, Harper JL. Ecology, From individuals to ecosystems. Blackwell Publising, Oxford UK; 2006. 59Rosales et al.; AJPAS, 8(4): 48-60, 2020; Article no.AJPAS.60315

Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Procedings Royal Society B. 2007;274:599-604. DOI:10.1098/rspb.2006.3754

Bolet´ın Integrado de Vigilancia (BIV). Direcci´on Nacional de Epidemiolog´ıa y An´alisis de la Salud. Ministerio de la Salud. residencia de la Naci´on. 2018;394-SE:02. ISSN 2422-698X

Instituto Geogr´afico Nacional (IGN). Argentina. Available:http://www.ign.gob.ar/.Geodatos

QGIS Software Development Team (QGIS 3.1.12). Available:https://qgis.org/es/site/

Ying L, Lillepold K, Semenzab JC, Tozan Y, Quam BM, Rocklvd J. Reviewing estimates of the basic reproduction number for dengue, Zika and chikungunya across global climate zones. Environmental Research. 2020;182:109-114.

Wong SSY, Poon RWS, Wong SChy. Zika virus infection the next wave after dengue. Journal of the Formosan Medical Association. 2016;115:226-242.

Gu´ıa para la Vigilancia Integrada de la infecci´on por Zika y recomendaciones para el equipo de Salud. Ministerio de Salud Presidencia de la Naci´on Argentina; 2016. Available:http://www.msal.gob.ar/images/stories/bes/graficos/0000000933cnt-2017-01-25-zika-guia-para-equipos-de-salud.pdf

Rosales JC, Avila Blas OJ, Yang HM. Monte Carlo simulation of American Tegumentary Leishmaniasis epidemic. The case in Or´an, Salta, Argentina. 1985-2007. Applied Mathematical Sciences. 2017;11:1-14. DOI: 10.12988/ams.2017.610255

Statgraphics Centurion 16.1.03. Stat Point Technologies Inc; 2010.Bettencourt LMA, Ribeiro RM. Real time bayesian estimation of the epidemic potential of emerging infectious diseases. PLoS ONE. 2008;3(5):e2185. DOI:10.1371/journal.pone.0002185

Villela DAM, Bastos LS, De Carvalho LM, Cruz OG, Gomes MFC, Durovni B, Lemos MC, Saraceni V, Coelho FC, Codeco CT. Zika in Rio de Janeiro: Assessment of basic reproduction number and comparison with dengue outbreaks. Epidemiological Infectious. 2017;145:1649-1657.

Mu~noz AG, Thomson MC, Vecchi GA, Chourio X, Njera P, Stewart-Ibarra AM, Moran Z, Yang X. Could the Recent Zika Epidemic Have Been Predicted. Frontiers of Microbiology. 2017;8:1291. DOI: 10.3389/fmicb.2017.01291

Melo VAD, Santos Silva JRS, La Corte R. Personal protective measures of pregnant women against Zika virus infection. Revista Sa´ude P´ublica. 2019;53-72